人教A版(2019)数学必修第一册《对数的概念》指数函数与对数函数PPT
展开
《对数的概念》指数函数与对数函数PPT
第一部分内容:课标阐释
1.理解对数的概念,掌握对数的基本性质.
2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程.
3.理解常用对数和自然对数的定义形式以及在科学实践中的应用.
4.了解对数的发展历史,了解数学文化.
... ... ...
对数的概念PPT,第二部分内容:自主预习
一、对数的概念
1.(1)某种细胞分裂时,由1个分裂成2个,2个分裂成4个,…依次类推,那么1个这样的细胞分裂x次后,得到的细胞个数N是多少?
提示:N=2x.
(2)上述问题中,若已知分裂后得到的细胞的个数分别为8个,16个,则分裂的次数分别是多少?
提示:3次,4次.
(3)上述问题中,如果已知细胞分裂后的个数N,能求出分裂次数x吗?
提示:能,x=log2N.
2.填空:
一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数.
3.在对数式x=logaN中,底数a和真数N的取值范围是什么,为什么?
提示:由于对数式中的底数a就是指数式中的底数a,所以a的取值范围为a>0,且a≠1;由于在指数式中ax=N,而ax>0,所以N>0.
4.对数式与指数式的互化
(1)在指数式和对数式中都含有a,x,N这三个量,那么这三个量在两个式子中各有什么异同点?
提示:
(2)53=125化为对数式是什么?log416=2化为指数式是什么?指数式与对数式具有怎样的关系?
提示:log5125=3,42=16.
当a>0,a≠1时,ax=N⇔x=logaN.
(3)(-3)2=9能否直接化为对数式log(-3)9=2?
提示:不能,因为只有符合a>0,a≠1时,才有ax=N⇔x=logaN.
5.做一做
(1)若a^(1/2)=b(a>0,且a≠1),则( )
A.loga1/2=b B.logab=1/2 C.log_(1/2)a=b D.log_(1/2)b=a
(2)若log4x=1/2,则( )
A.4x=1/2 B.x^(1/2)=4 C.x4=1/2 D.4^(1/2)=x
(3)若对数log(x-1)(4x-5)有意义,则x的取值范围是 ( )
A.5/4≤x<2 B.5/2<x<2
C.5/4<x<2或x>2 D.2≤x≤3
... ... ...
对数的概念PPT,第三部分内容:探究学习
对数式与指数式的互化
例1 将下列指数式与对数式互化:
(1)log_(1/3)27=-3; (2)43=64;
(3)e-1=1/e; (4)10-3=0.001.
分析:利用当a>0,且a≠1时,logaN=b⇔ab=N进行互化.
解:(1)(1/3)^("-" 3)=27. (2)log464=3.
(3)ln1/e=-1. (4)lg 0.001=-3.
反思感悟1.logaN=b与ab=N(a>0,且a≠1)是等价的,表示a,b,N三者之间的同一种关系.如下图:
2.根据这个关系式可以将指数式与对数式互化:将指数式化为对数式,只需将幂作为真数,指数作为对数,底数不变;而将对数式化为指数式,只需将对数式的真数作为幂,对数作为指数,底数不变.
变式训练1将下列指数式与对数式互化:
(1)2-2=1/4; (2)102=100; (3)ea=16;
(4)log641/4=-1/3; (5)logxy=z(x>0,且x≠1,y>0).
解:(1)log21/4=-2. (2)log10100=2,即lg 100=2.
(3)loge16=a,即ln 16=a. (4)64^("-" 1/3)=1/4.
(5)xz=y(x>0,且x≠1,y>0).
... ... ...
对数的概念PPT,第四部分内容:思维辨析
因忽视底数的取值范围而致错
典例 已知log(x+3)(x2+3x)=1,求实数x的值.
错解由对数的性质可得x2+3x=x+3,解得x=1或x=-3.
以上解题过程中都有哪些错误?出错的原因是什么?你如何改正?如何防范?
提示:上述解法的错误在于忘记检验底数需大于0且不等于1.
正解:由对数的性质知{■(x^2+3x=x+3"," @x^2+3x>0"," @x+3>0",且" x+3≠1"," )┤
解得x=1.故实数x的值为1.
防范措施 1.在对数表达式x=logaN中,需满足底数a>0,且a≠1,真数N>0.
2.在利用对数式的性质求出a的值后,务必验证底数和真数是否满足对数式的意义.
变式训练对数式log(a-2)(5-a)中实数a的取值范围是( )
A.(-∞,5)
B.(2,5)
C.(2,3)∪(3,5)
D.(2,+∞)
解析:要使对数式b=log(a-2)(5-a)有意义,
则{■(a"-" 2>0"," @5"-" a>0"," @a"-" 2≠1"," )┤解得a∈(2,3)∪(3,5),
故选C.
答案:C
... ... ...
对数的概念PPT,第五部分内容:随堂演练
1.将log5b=2化为指数式是( )
A.5b=2 B.b5=2 C.52=b D.b2=5
答案:C
2.将(1/2)^("-" 3)=8化为对数式是( )
A.log(-3)8=1/2 B.log_(1/2)8=3
C.log_(1/2)8=-3 D.log38=-1/2
答案:C
3.16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,数学家纳皮尔在研究天文学的过程中,为简化计算发明了对数.直到18世纪,才由瑞士数学家欧拉发现了指数与对数的互逆关系,即ab=N⇔b=logaN.现在已知a=log23,则2a=———.
解析:由a=log23,
化对数式为指数式可得2a=3.
答案:3
... ... ...
关键词:高中人教A版数学必修一PPT课件免费下载,对数的概念PPT下载,指数函数与对数函数PPT下载,.PPT格式;